123 research outputs found

    In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography

    Get PDF
    We introduce flow optical projection tomography, an imaging technique capable of visualizing the vasculature of living specimens in 3-D. The method detects the movement of cells in the bloodstream and creates flow maps using a motion-analysis procedure. Then, flow maps obtained from projection taken at several angles are used to reconstruct sections of the circulatory system of the specimen. We therefore demonstrate an in vivo, 3-D optical imaging technique that, without the use of any labeling, is able to reconstruct and visualize the vascular network of transparent and weakly scattering living specimens. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)

    Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging

    Get PDF
    International audienceSingle pixel camera imaging is an emerging paradigm that allows high-quality images to be provided by a device only equipped with a single point detector. A single pixel camera is an experimental setup able to measure the inner product of the scene under view –the image– with any user-defined pattern. Post-processing a sequence of point measurements obtained with different patterns permits to recover spatial information, as it has been demonstrated by state-of-the art approaches belonging to the compressed sensing framework. In this paper, a new framework for the choice of the patterns is proposed together with a simple and efficient image recovery scheme. Our goal is to overcome the computationally demanding 1-minimization of compressed sensing. We propose to choose patterns among a wavelet basis in an adaptive fashion, which essentially relies onto the prediction of the significant wavelet coefficients' location. More precisely, we adopt a multiresolution strategy that exploits the set of measurements acquired at coarse scales to predict the set of measurements to be performed at a finer scale. Prediction is based on a fast cubic interpolation in the image domain. A general formalism is given so that any kind of wavelets can be used, which enables one to adjust the wavelet to the type of images related to the desired application. Both simulated and experimental results demonstrate the ability of our technique to reconstruct biomedical images with improved quality compared to CS-based recovery. Application to real-time fluorescence imaging of biological tissues could benefit from the proposed method

    Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    Get PDF
    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability

    Compressed sensing in fluorescence microscopy.

    Get PDF
    Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from under-sampled data with respect to the Nyquist criterium. CS exploits sparsity constraints based on the knowledge of prior information, relative to the structure of the object in the spatial or other domains. It is commonly used in image and video compression as well as in scientific and medical applications, including computed tomography and magnetic resonance imaging. In the field of fluorescence microscopy, it has been demonstrated to be valuable for fast and high-resolution imaging, from single-molecule localization, super-resolution to light-sheet microscopy. Furthermore, CS has found remarkable applications in the field of mesoscopic imaging, facilitating the study of small animals' organs and entire organisms. This review article illustrates the working principles of CS, its implementations in optical imaging and discusses several relevant uses of CS in the field of fluorescence imaging from super-resolution microscopy to mesoscopy

    Time-resolved photoluminescence spectroscopy and imaging: New approaches to the analysis of cultural heritage and its degradation

    Get PDF
    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested

    The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA

    Get PDF
    Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency

    Non-Destructive Quantification of Chemical and Physical Properties of Fruis by Time-Resolved Reflectance Spectroscopy in the Wavelength Range 650-1000 nm

    Get PDF
    Time-resolved reflectance spectroscopy can be used to assess nondestructively the bulk (rather than the superficial) optical properties of highly diffusive media. A fully automated system for time-resolved reflectance spectroscopy was used to evaluate the absorption and the transport scattering spectra of fruits in the red and the near-infrared regions. In particular, data were collected in the range 650-1000 nm from three varieties of apples and from peaches, kiwifruits, and tomatoes. The absorption spectra were usually dominated by the water peak near 970 nm, whereas chlorophyll was detected at 675 nm. For all species the scattering decreased progressively with increasing wavelength. A best fit to water and chlorophyll absorption line shapes and to Mie theory permitted the estimation of water and chlorophyll content and the average size of scattering centers in the bulk of intact fruits

    Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm

    Get PDF
    Time-resolved reflectance spectroscopy can be used to assess nondestructively the bulk (rather than the superficial) optical properties of highly diffusive media. A fully automated system for time-resolved reflectance spectroscopy was used to evaluate the absorption and the transport scattering spectra of fruits in the red and the near-infrared regions. In particular, data were collected in the range 650-1000 nm from three varieties of apples and from peaches, kiwifruits, and tomatoes. The absorption spectra were usually dominated by the water peak near 970 nm, whereas chlorophyll was detected at 675 nm. For ail species the scattering decreased progressively with increasing wavelength. A best fit to water and chlorophyll absorption line shapes and to Mie theory permitted the estimation of water and chlorophyll content and the average size of scattering centers in the bulls; of intact fruits

    Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH

    Get PDF
    Light harvesting for oxygenic photosynthesis is regulated to prevent the formation of harmful photoproducts by activation of photoprotective mechanisms safely dissipating the energy absorbed in excess. Lumen acidification is the trigger for the formation of quenching states in pigment binding complexes. With the aim to uncover the photoprotective functional states responsible for excess energy dissipation in green algae and mosses, we compared the fluorescence dynamic properties of the light-harvesting complex stress-related (LHCSR1) protein, which is essential for fast and reversible regulation of light use efficiency in lower plants, as compared to the major LHCII antenna protein, which mainly fulfills light harvesting function. Both LHCII and LHCSR1 had a chlorophyll fluorescence yield and lifetime strongly dependent on detergent concentration but the transition from long- to short-living states was far more complete and fast in the latter. Low pH and zeaxanthin binding enhanced the relative amplitude of quenched states in LHCSR1, which were characterized by the presence of 80 ps fluorescence decay components with a red-shifted emission spectrum. We suggest that energy dissipation occurs in the chloroplast by the activation of 80 ps quenching sites in LHCSR1 which spill over excitons from the photosystem II antenna system

    Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach

    Get PDF
    We introduce a broadband single-pixel spectro-temporal fluorescence detector, combining time-correlated single photon counting (TCSPC) with Fourier transform (FT) spectroscopy. A birefringent common-path interferometer (CPI) generates two time-delayed replicas of the sample's fluorescence. Via FT of their interference signal at the detector, we obtain a two-dimensional map of the fluorescence as a function of detection wavelength and emission time, with high temporal and spectral resolution. Our instrument is remarkably simple, as it only requires the addition of a CPI to a standard single-pixel TCSPC system, and it shows a readily adjustable spectral resolution with inherently broad bandwidth coverage
    • …
    corecore